Complete Genome Sequence of Spongospora subterranea from North America

Augustina K. Arjarquah, Jatinder Singh, Kimberly Zitnick-Anderson, Binod Pandey, Ipsita Mallik, Upinder Gill, and Julie S. Pasche* North Dakota State University, Department of Plant Pathology; Fargo, N, USA Julie.Pasche@NDSU.edu

Introduction

Obtaining quality genomic DNA free from host and microbial contaminants of *Spongospora subterranea* f. sp. *subterranea* (Wallroth) Lagerheim is very challenging due to durability of the sporosori and the obligate pathogen life-style. A genome is available for this globally economically important pathogen, but little to no post-sequencing analyses were completed. Here, we present a complete genome with annotations by combining long- and short-read DNA sequences.

Methods

Sporosori were collected from root galls on a single plant cultivar 'Russet Burbank' for DNA isolation followed by long-read sequencing using Oxford Nanopore Technology (ONT) (Figure 1). Illumina short-read sequencing was completed on DNA isolated from sporosori in pustules on tubers from a single commercial field in the same region.

Results

• The genome was predicted to have 10,325 protein-coding genes, including 321 potential fungal effectors, 700 signal peptide proteins, 135 carbohydrate active enzymes, 1981 KEGG assigned genes, and 2660 Clusters of Orthologous Genes (COGs).

 \ge 2 localization

Figure 2. Sub-cellular localization of predicted genes. Predicted genes localized in the Golgi apparatus, peroxisome, and plasmid described as others; predicted genes in two or more sub-cellular localizations described as >2 localization.

- Nuclear localization signal Nuclear export signal ■ Signal peptide Mitochondrial transit peptide Peroxisomal targeting signal Transmembrane domain
- SP|TM domain

Figure 3. Localization signals associated with predicted genes. Predicted genes with two or more peptide sequences destined for specific cellular compartments described as >2 signals.

Repeat region 1 Hybrid scaffold assembly Repeat region 2

Annotation

Figure 1. Schematic illustration of the Spongospora subterranea SssMN22-1 whole genome assembly workflow. Adapted from Rodriguez-Anaya et al. 2021.

Results

Table 1. Genome assembly and annotation features of Spongospora subterranea, SssMN22-1

Features	SssMN22-1	
Sample	Root galls and tuber pustules	
Location	Minnesota, USA	
Sequencing method	ONT long-reads and Illumina 150 paired-end reads	
Genome size (Mb)	31.5	
Number of contigs	352	
Number of scaffolds	346	
Scaffold N ₅₀ (kb)	122	
GC content (%)	45.7	
Largest scaffold (bp)	2,088,320	
Percent gaps (%)	0.001	
Repeats and transposable elements (bp)	27.0%	
BUSCO ^a	96.1%	
Number of predicted genes	10,325	
Proteins with KEGG ^b assignment	1981	
Proteins with COG ^c assignment	2466	
Proteins annotated with CAZymes ^d	135	
Pfam ^e	2249	
Number of secreted proteins predicted	700	
Predicted fungal effectors from secreted proteins	321	
^a Benchmarking Universal Single-Copy Orthologs		
^b Kyoto Encyclopedia of Genes and Genomes		
^c Cluster of Orthologous Genes		
^d Carbohydrate Active Enzymes		
^e Protein Families		

Information, Storage and Processing ■ A - RNA processing and modification (100, 4.05%) B - Chromatin structure and dynamics (59, 2.39%) J - Translation, ribosomal structure and biogenesis (187, 7.58%) K - Transcription (103, 4.18%) L - Replication, recombination and repair (315, 12.77%) Cellular Processing and Signaling D - Cell cycle control, cell division, chromosome partitioning (50, 2.03%) M - Cell wall/membrane/envelope biogenesis (40, 1.62%) N - Cell motility (3, 0.12%) O - Posttranslational modification, protein turnover, chaperones (254, 10.30%) T - Signal transduction mechanisms (148, 6.0%) U - Intracellular trafficking, secretion, and vesicular transport (103, 4.18%) V - Defense mechanisms (16, 0.65%) ■ W - Extracellular structures (1,0.04%) Y - Nuclear structure (5,0.20%) Z - Cytoskeleton (98, 3.97%) ■ C - Energy production and conversion (98, 3.97%) E - Amino acid transport and metabolism (90, 3.65%) F - Nucleotide transport and metabolism (39, 1.58%) G - Carbohydrate transport and metabolism (74, 3.0%) H - Coenzyme transport and metabolism (65, 2.64%) I - Lipid transport and metabolism (89, 3.61%) P - Inorganic ion transport and metabolism (65, 2.64%) Q - Secondary metabolites biosynthesis, transport and catabolism (57, 2.31%) **Poorly Characterized** R - General function prediction only (0,0) ■ S - Function unknown (400, 16.5%)

Figure 4. The phylogenetic classification of 2466 cluster of orthologous genes (COGs) from *Sss*MN22-1. Each functional category is denoted by a one-letter abbreviation.

Conclusions

The new draft reference genome resource described in this study:

Table 2. Comparing genome assembly and annotation features of Plasmodiophorids

Feature	S. subterranea, SssMN22-1	S. subterranea, SSUBK13	P. brassicae
	(Arjarquah et al. submitted)	(Ciaghi et al. 2018)	(Schwelm et al. 2015)
Sample	Root galls and tuber pustules	Resting spores	Single spore
Sequencing method	Nanopore-MinION and Illumina Miseg	Illumina Hiseq 2500	Roche 454 FLX and Illumina Hiseg 2100
Genome size (Mb)	31.51	28.08	25.5
Number of scaffolds	346	2,340	165
Scaffold N ₅₀ (kb)	122	28.6	473
GC content	45.70%	45.70%	58.50%
Percent gaps	0.00%	0.71%	1.43%
Repeats and TE ^a	26.97%	10.67%	5.45%
BUSCO ^b	96.10%	93.10%	97.00%
Predicted coding genes	10,325	10,778	9,730

^aTransposable Element

^bBenchmarking Universal Single-Copy Orthologs

- Provides a basis for increased understanding of international pathogen populations
- Enhances our understanding of the biology of *S. subterranea*
- Aids in the development of new strategies for managing powdery scab and PMTV of potato
- Help in identifying potential targets for disease control including the development of resistant crop varieties
- May increase knowledge of the evolution and spread of this economically significant plant pathogen
- Can reveal novel genes and pathways that could be exploited for biotechnology applications

Data Availability: Genome sequence data is available upon request

NORTH DAKOTA STATE UNIVERSITY